2 research outputs found

    Electroencephalographic field influence on calcium momentum waves

    Get PDF
    Macroscopic EEG fields can be an explicit top-down neocortical mechanism that directly drives bottom-up processes that describe memory, attention, and other neuronal processes. The top-down mechanism considered are macrocolumnar EEG firings in neocortex, as described by a statistical mechanics of neocortical interactions (SMNI), developed as a magnetic vector potential A\mathbf{A}. The bottom-up process considered are Ca2+\mathrm{Ca}^{2+} waves prominent in synaptic and extracellular processes that are considered to greatly influence neuronal firings. Here, the complimentary effects are considered, i.e., the influence of A\mathbf{A} on Ca2+\mathrm{Ca}^{2+} momentum, p\mathbf{p}. The canonical momentum of a charged particle in an electromagnetic field, Π=p+qA\mathbf{\Pi} = \mathbf{p} + q \mathbf{A} (SI units), is calculated, where the charge of Ca2+\mathrm{Ca}^{2+} is q=−2eq = - 2 e, ee is the magnitude of the charge of an electron. Calculations demonstrate that macroscopic EEG A\mathbf{A} can be quite influential on the momentum p\mathbf{p} of Ca2+\mathrm{Ca}^{2+} ions, in both classical and quantum mechanics. Molecular scales of Ca2+\mathrm{Ca}^{2+} wave dynamics are coupled with A\mathbf{A} fields developed at macroscopic regional scales measured by coherent neuronal firing activity measured by scalp EEG. The project has three main aspects: fitting A\mathbf{A} models to EEG data as reported here, building tripartite models to develop A\mathbf{A} models, and studying long coherence times of Ca2+\mathrm{Ca}^{2+} waves in the presence of A\mathbf{A} due to coherent neuronal firings measured by scalp EEG. The SMNI model supports a mechanism wherein the p+qA\mathbf{p} + q \mathbf{A} interaction at tripartite synapses, via a dynamic centering mechanism (DCM) to control background synaptic activity, acts to maintain short-term memory (STM) during states of selective attention.Comment: Final draft. http://ingber.com/smni14_eeg_ca.pdf may be updated more frequentl

    Of nodes and cells. Two perspectives on (and from) Word Formation Latin

    No full text
    The LiLa: Linking Latin project involves the creation of a Knowledge Base of linguistic resources for Latin based on the Linked Data framework. The ultimate goal is to reach full interoperability on the web between distributed lexical and textual resources. LiLa integrates all types of annotation applied to a particular word/text into a common representation where all linguistic information contained in a linguistic resource becomes accessible. The LiLa Knowledge Base is thus a collection of resources represented with a shared vocabulary of (meta)linguistic knowledge description. The inclusion in the Knowledge Base of information on word formation, extracted from the Word Formation Latin lexical resource, raised a number of theoretical and practical issues concerning its treatment and representation. This paper discusses such issues, presents how they were addressed in the project with the help and implementation of a Word Paradigm theoretical model, and describes how the word formation data were included in the LiLa ontology
    corecore